6 research outputs found

    The General Very Special Relativity in Finsler Cosmology

    Full text link
    General Very Special Relativity (GVSR) is the curved space-time of Very Special Relativity (VSR) proposed by Cohen and Glashow. The geometry of GVSR possesses a line element of Finsler Geometry proposed by Bogoslovsky. We calculate the Einstein field equations and derive a modified FRW cosmology, for an osculating Riemannian space. The Friedman equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial spurionic vector field introduced into the metric, gives back an estimation of the energy evolution and inflationComment: 14 pages- accepted to Physical Review

    Finsler Branes and Quantum Gravity Phenomenology with Lorentz Symmetry Violations

    Full text link
    A consistent theory of quantum gravity (QG) at Planck scale almost sure contains manifestations of Lorentz local symmetry violations (LV) which may be detected at observable scales. This can be effectively described and classified by models with nonlinear dispersions and related Finsler metrics and fundamental geometric objects (nonlinear and linear connections) depending on velocity/ momentum variables. We prove that the trapping brane mechanism provides an accurate description of gravitational and matter field phenomena with LV over a wide range of distance scales and recovering in a systematic way the general relativity (GR) and local Lorentz symmetries. In contrast to the models with extra spacetime dimensions, the Einstein-Finsler type gravity theories are positively with nontrivial nonlinear connection structure, nonholonomic constraints and torsion induced by generic off-diagonal coefficients of metrics, and determined by fundamental QG and/or LV effects.Comment: latex2e, 11pt, 34 pages, the version accepted to Class. Quant. Gra

    Friedmann Robertson-Walker model in generalised metric space-time with weak anisotropy

    Full text link
    A generalized model of space-time is given, taking into consideration the anisotropic structure of fields which are depended on the position and the direction (velocity).In this framework a generalized FRW-metric the Raychaudhouri and Friedmann equations are studied.A long range vector field of cosmological origin is considered in relation to the physical geometry of space-time in which Cartan connection has a fundamental role.The generalised Friedmann equations are produced including anisotropic terms.The variation of anisotropy ztz_t is expressed in terms of the Cartan torsion tensor of the Finslerian space-time.A possible estimation of the anisotropic parameter ztz_t can be achieved with the aid of the de-Sitter model of the empty flat universe with weak anisotropy. Finally a physical generalisation for the model of inflation is also studied.Comment: 21 pages- to appear in GR
    corecore